Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

CityTransformer; A Transformer-based model for contaminant dispersion prediction in a realistic urban area

Asahi, Yuichi; Onodera, Naoyuki; Hasegawa, Yuta; Shimokawabe, Takashi*; Shiba, Hayato*; Idomura, Yasuhiro

Boundary-Layer Meteorology, 186(3), p.659 - 692, 2023/03

 Times Cited Count:0 Percentile:0.01(Meteorology & Atmospheric Sciences)

We develop a Transformer-based deep learning model to predict the plume concentrations in the urban area under uniform flow conditions. Our model has two distinct input layers: Transformer layers for sequential data and convolutional layers in convolutional neural networks (CNNs) for image-like data. Our model can predict the plume concentration from realistically available data such as the time series monitoring data at a few observation stations and the building shapes and the source location. It is shown that the model can give reasonably accurate prediction with orders of magnitude faster than CFD simulations. It is also shown that the exactly same model can be applied to predict the source location, which also gives reasonable prediction accuracy.

Journal Articles

Coherent eddies transporting passive scalars through the plant canopy revealed by Large-Eddy simulations using the lattice Boltzmann method

Watanabe, Tsutomu*; Takagi, Marie*; Shimoyama, Ko*; Kawashima, Masayuki*; Onodera, Naoyuki; Inagaki, Atsushi*

Boundary-Layer Meteorology, 181(1), p.39 - 71, 2021/10

 Times Cited Count:6 Percentile:45.38(Meteorology & Atmospheric Sciences)

A double-distribution-function lattice Boltzmann model for large-eddy simulations of a passive scalar field is described within and above a plant canopy. For a top-down scalar, for which the plant canopy serves as a distributed sink, the flux of the scalar near the canopy top are predominantly determined by sweep motions originating far above the canopy. By contrast, scalar ejection events are induced by coherent eddies generated near the canopy top. In this paper, the generation of such eddies is triggered by the downward approach of massive sweep motions to existing wide regions of weak ejective motions from inside to above the canopy.

Journal Articles

Real-time tracer dispersion simulations in Oklahoma City using the locally mesh-refined lattice Boltzmann method

Onodera, Naoyuki; Idomura, Yasuhiro; Hasegawa, Yuta; Nakayama, Hiromasa; Shimokawabe, Takashi*; Aoki, Takayuki*

Boundary-Layer Meteorology, 179(2), p.187 - 208, 2021/05

 Times Cited Count:13 Percentile:73.61(Meteorology & Atmospheric Sciences)

A plume dispersion simulation code named CityLBM enables a real time simulation for several km by applying adaptive mesh refinement (AMR) method on GPU supercomputers. We assess plume dispersion problems in the complex urban environment of Oklahoma City (JU2003). Realistic mesoscale wind boundary conditions of JU2003 produced by a Weather Research and Forecasting Model (WRF), building structures, and a plant canopy model are introduced to CityLBM. Ensemble calculations are performed to reduce turbulence uncertainties. The statistics of the plume dispersion field, mean and max concentrations show that ensemble calculations improve the accuracy of the estimation, and the ensemble-averaged concentration values in the simulations over 4 km areas with 2-m resolution satisfied factor 2 agreements for 70% of 24 target measurement points and periods in JU2003.

Journal Articles

A Numerical study of turbulence statistics and the structure of a spatially-developing boundary layer over a realistic urban geometry

Inagaki, Atsushi*; Kanda, Manabu*; Ahmad, N. H.*; Yagi, Ayako*; Onodera, Naoyuki; Aoki, Takayuki*

Boundary-Layer Meteorology, 164(2), p.161 - 181, 2017/08

 Times Cited Count:30 Percentile:73.33(Meteorology & Atmospheric Sciences)

The applicability of outer-layer scaling is examined by numerical simulation of a developing neutral boundary layer over a realistic building geometry of Tokyo. Large-eddy simulations are carried out over a large computational domain 19.2 km $$times$$ 4.8 km $$times$$1 km, with a fine grid spacing (2 m) using the lattice-Boltzmann method with massively parallel graphics processing units. Results from simulations show that outer-layer features are maintained for turbulence statistics in the upper part of the boundary layer, as well as the width of predominant streaky structures throughout the entire boundary layer. This is caused by the existence of very large streaky structures extending throughout the entire boundary layer, which follow outer-layer scaling with a self-preserving development. We assume the top-down mechanism in the physical interpretation of results.

Journal Articles

Comparative studies in the local circulations induced by land-use and by topography

Lee, S.; Kimura, Fujio*

Boundary-Layer Meteorology, 101(2), p.157 - 182, 2001/11

 Times Cited Count:53 Percentile:74.53(Meteorology & Atmospheric Sciences)

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1